DIAGRAMME D'EQUILIBRE LIQUIDE-LIQUIDE DE SYSTEMES BINAIRES PYRIDINE+*n*-ALCANES

O. Dahmani et A. Ait-Kaci

Université des Sciences et de la Technologie Houari Boumediène, Institut de Chimie, laboratoire de thermodynamique de mélanges organiques, Bp. 139. Dar El Beida, Bab Ezzouar, Alger, Algerie

(Reçu le 29 Mai 1993, Manuscrit corrigé le 14 Janvier 1994)

Résumé

Liquid-liquid phase diagrams have been determined for binary systems of pyridine +n-hexane, pyridine +n-heptane and pyridine +n-dodecane. A general quasi-chemical theory in terms of group surface interactions has been applied to compute these liquid-liquid phase diagrams.

Keywords: pyridine with n-alkanes, liquid-liquid phase diagrams, group surface interaction

Partie expérimentale

La méthode utilisée pour la détermination expérimentale des diagrammes d'équilibre liquide-liquide est celle de l'apparition du point de trouble. Cette méthode consiste à abaisser la température du mélange et à déterminer la température à laquelle apparaît un trouble (début de démixtion).

Le problème rencontré sur le plan expérimental est évidenment le fait que la démixtion a lieu à des températures relativement basses: cela gène l'observation de l'apparition du trouble (à la sortie de la cellule du bain réfrigérant, les vapeurs d'eau de l'air cristallisent sur la paroi).

Néanmoins, nous avons essayé de cerner la lacune de miscibilité par le mode opératoire suivant:

Le mélange est introduit dans la cellule (Fig. 1). Le tout est introduit dans un bain réfrigérant. Un premier refroidissement permet de localiser approximativement la température de démixtion. Après un deuxième refroidissement, la cellule est sortie avant l'apparition du trouble. Le refroidissement continuant, on effectue un jet d'acétone sur l'extérieur de la cellule pour pouvouir observer le trouble.

Dans le cas présent, il a été plus commode d'observer la disparition que l'apparition du trouble: une fois que la démixtion se produit, on laisse chauffer le mélange à température ambiante. Etant donné la difficulté d'observation de la démixtion, les températures sont estimées au demi degrés près.

Les produits utilisés n'ont pas été purifiés. Nous avons choisi les produits avec les puretés indiquées ci-dessous:

Produits	Origine	Pureté
Pyridine	Merck	99.9%
n-Hexane	Merck	99 %
n-Heptane	Fluka	99 %
n-Dodécane	Merck	99 %

Les résultats expérimentaux des diagrammes d'équilibre liquide-liquide sont regroupés dans les tableaux (1) à (3). Dans le tableau (4) sont regroupés les coordonnées critiques de chaque binaire.

On remarque que les coordonnées du point critique se déplacent vers la composition riche en pyridine, en passant de l'hexane au dodécane.

Fig. 1 A: agitateur, T: tube en verre pour introduire le thermocouple, P: double paroi en verre, D: vase Dewar contenant le bain réfrigérant, S: support et C: tube interne porte échantillon

x (1)	<i>Т / К</i>	x (1)	<i>T /</i> K
0.125	232.2	0.707	250.2
0.248	242.7	0.804	246.2
0.406	249.2	0.847	240.2
0.474	250.2	0.921	226.2
0.587	252.2		

Tableau 1 Equilibre liquide-liquide n-hexane (1) + pyridine (2)

Tableau 2 Equilibre liquide-liquide *n*-heptane (1) + pyridine (2)

x (1)	Τ / Κ	x (1)	<i>T /</i> K
0.118	234.2	0.446	253.2
0.172	242.2	0.559	255.2
0.263	248.2	0.688	250.2
0.354	251.2	0.822	245.2

 Tableau 3 Equilibre liquide-liquide n-dodécane (1) + pyridine (2)

x (1)	<i>T /</i> K	x (1)	<i>T /</i> K
0.106	261.2	0.587	266.2
0.161	265.2	0.643	265.2
0.262	268.2	0.762	262.2
0.348	268.7		

Tableau 4

Binaires	x _{lc}	<i>T</i> _c / K
Pyridine $(1) - n$ -hexane (2)	0.314	252.2
Pyridine $(1) - n$ -heptane (2)	0.441	255.2
Pyridine $(1) - n$ -dodécane (2)	0.652	268.7

Partie théorique

Pour calculer les diagrammes d'équilibre liquide-liquide des binaires étudiés, nous avons appliqué la théorie du réseau rigide dans l'approximation quasi-chimique. Pour cela nous avons tracé l'enthalpie libre molaire de mélange $G_{\rm M}$ en fonction de la composition et à différentes températures.

La composition des deux phases à une température donnée est alors déterminée par la méthode de la bitangeante sur une courbe de G_M .

Dans la théorie du réseau rigide (approximation quasi-chimique), l'enthalpie libre molaire d'excès G^{E} est donnée par la relation:

$$G^{E}/RT = \sum_{i} x_{i} \left[\ln(\varphi_{i}/x_{i}) + z \cdot q_{i} \sum_{s} \alpha_{si} \cdot \ln(X_{s} \cdot \alpha_{si} / X_{si} \cdot \alpha_{s}) \right]$$
(1)

où

$$\alpha_{\rm s} = \sum_{\rm i} \alpha_{\rm si} \xi_{\rm i} \tag{2}$$

 X_s sont les solutions du système d'équations:

$$X_{s} \left(X_{s} + \sum_{s} X_{s} \eta_{st} \right) = \alpha_{s}$$
(3)

$$\eta_{\rm st} = \exp(-g_{\rm st}/zRT) \tag{4}$$

. . .

 φ_i et ξ_i sont respectivement la fraction volumique et la fraction de surface relatives à un constituant i. Elles s'expriment en fonction des paramètres géométriques r_i et q_i comme:

$$\varphi_{i} = (r_{i}x_{i}) / \left(\sum_{i} r_{i}x_{i}\right); \quad \xi_{i} = (q_{i}x_{i}) / \left(\sum_{i} q_{i}x_{i}\right)$$
(5)

Soient g_{st}° et h_{st}° respectivement les enthalpies libres et les enthalpies d'interéchange à une température T° . En considérant le paramètre h_{st}° comme indépendant de la température, le paramètre g_{st} en fonction de la température s'exprime par la relation:

$$(g_{\rm st}/RT) = (g_{\rm st}^{\rm o}/RT^{\rm o}) + (h_{\rm st}^{\rm o}/RT^{\rm o})(\tau - 1)$$
(6)

où $\tau = T^{\circ}/T$; ($T^{\circ} = 298.16$ K).

Pour les substances étudiées ici, nous avons distingué trois types de surfaces: une surface de type aliphatique, une surface de type benzénique et une surface n de l'azote.

Le reste du noyanu de la pyridine est considéré comme une surface de type benzénique.

L'expression de G_M est alors données par la relation:

$$G_{\rm M} = G^{\rm E} + G_{\rm M}^{\rm idéale} \tag{7}$$

оù

$$G_{\rm M}^{\rm idéale} = RT \sum_{\rm i} x_{\rm i} \ln(x_{\rm i}) \tag{8}$$

J. Thermal Anal., 44, 1995

Les paramètres géométrique des corps purs utilisés sont regroupés dans le tableau (5).

Constituant i	ri	q_{i}	α _{ai}	αњі	α _{ni}
Hexane	3.9871	3.3241	1	0	0
Heptane	4.5847	3.7897	1	0	0
Dodécane	7.5724	6.1172	1	0	` 0
Benzène	2.8248	2.0724	0	1	0
Pyridine	2.6577	1.8332	0	0.9405	0.0595

Tableau 5 Paramètres géométriques

Tableau 6

Paramètres		types de contacts	
	ab	an	bn
$g_{\rm st}^{\rm o}$ / $RT^{\rm o}$	0.25	22.34	11.29
$h_{\rm st}^{\rm o}$ /RT ^o	0.56	27.13	0.45

Le nombre de types de surfaces étant de trois, nous avons donc trois types d'interactions: a-b, entre l'alcane et le benzène, b-n, entre le benzène et l'azote et enfin a-n, entre l'alcane et l'azote.

Les paramétres g_{ab}° et h_{ab}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire benzène-heptane [3-5] à x=0.5 et à 298.15 K. Nous avons appliqué dans ce cas la théorie du réseau dans l'approximation zéro.

Les paramètres g_{bn}° et h_{bn}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire benzène-pyridine [3-5] à x=0.5 et à 298.15 K. Nous avons appliqué dans ce cas la théorie du réseau rigide dans l'approximation quasi-chimique. Le mélange benzènepyridine comme un système à deux types de surfaces. Le nombre de coordination a été pris égal à 10.

Les couples de paramètres $(g_{ab}^{\circ}, h_{ab}^{\circ})$ et $(g_{bn}^{\circ}, h_{bn}^{\circ})$ étant déterminés, g_{an}° et h_{an}° ont été ajustés respectivement sur l'enthalpie libre molaire d'excès et l'enthalpie molaire d'excès du système binaire pyridine-heptane [6-7] à x=0.5 et à 298.15 K. Nous avons aussi utilisé la théorie du réseau rigide dans l'approximation quasi-chimique, le nombre de coordination z étant à 10.

Les valeurs des paramètres ajustés sont reportés dans le tableau (6).

Sur les Figures 2.a, 3.a et 4.a sont représentées les enthalpies libres molaires de mélanges calculées à l'aide de la théorie. Les courbes d'équilibre liquide-liquide calculées à l'aide de la théorie sont représentées sur les Figures 2.b, 3.b et 4.b.

Fig 2a Courbes $G_M = f(x)$ du système pyridine (1) + hexane (2) à 225, 230, 235, 240, 245, 250 et 255 K

Fig. 2b Diagramme liquide-liquide du système pyridine (1) + hexane (2)

Fig 3a Courbes $G_M = f(x)$ du système pyridine (1) + heptane (2) à 225, 230, 235, 240, 245, 250 et 255 K

Fig. 3b Diagramme liquide-solide du système pyridine (1) + heptane (2)

Fig 4a Courbes $G_M = f(x)$ du système pyridine (1) + dodécane (2) à 260, 265, 270, 275 et 280 K

Fig. 4b Diagramme liquide-liquide du système pyridine (1) + dodécane (2)

Conclusion

Nous constatons des écarts entre les courbes d'équilibre liquide-liquide calculées et celles mesurées. Il convient de remarquer que nous n'avons pas tenu compte de la variation de l'enthalpie d'interéchange h_{st} en fonction de la température car nous ne disposons pas de valeurs des capacités calorifiques d'excès concernant les systèmes étudiés.

Cependant les courbes de l'enthalpie libre de mélange en fonction de la composition calculées théoriquement montrent et confirment bien l'existence des lacunes de miscibilité. Malgré les écarts observés, ces lacunes de miscibilité sont qualitativement assez bien décrites.

Symboles

- x_i Fraction molaire du constituant *i*
- T Température (K)
- $T_{\rm c}$ Température critique (K)
- z Nombre de coordination
- st Type de surface
- q_i Surface totale de la molécule de type *i*
- α_{si} Fraction de surface de type s sur une molécule *i*.

Bibliographie

- 1 H. V. Kehiaian, J. P. E. Grolier et G. C. Benson, J. Chim. Phys., 11-12 (1978) 75.
- 2 A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses, John Wiley, New York 1968 p. 502
- 3 P. R. Garret, J. M. Pollock et K. W. Morcom, J. Chem. Thermodyn., 3 (1971) 135.
- 4 P. R. Garret, J. M. Pollock et K. W. Morcom, J. Chem. Thermodyn., 5 (1973) 569.
- 5 P. R. Garret et J. M. Pollock, J. Chem., 9 (1977) 561-566, 1045-1049.
- 6 M. A. Michou-Saucet, J. Jose et C. Michou-Saucet, Int. Data Ser., Sel. Data Mixtures, 1986, pp. 140-145.
- 7 A. Ait-Kaci, Thèse de doctorat d'état ès science. Université de Lyon 1982.

Zusammenfassung — Es wurden Liquid-Liquid-Phasendiagramme für die binären Systeme Pyridin + Hexan, Pyridin + n-Heptan sowie Pyridin + n-Dodekan bestimmt. Zur Berechnung dieser Liquid-Liquid-Phasendiagramme wurde eine allgemeine quasi-chemische Theorie bezüglich von Gruppen-Oberflächenwechselwirkungen angewendet.